Phytoglobins Improve Hypoxic Root Growth by Alleviating Apical Meristem Cell Death.
نویسندگان
چکیده
Hypoxic root growth in maize (Zea mays) is influenced by the expression of phytoglobins (ZmPgbs). Relative to the wild type, suppression of ZmPgb1.1 or ZmPgb1.2 inhibits the growth of roots exposed to 4% oxygen, causing structural abnormalities in the root apical meristems. These effects were accompanied by increasing levels of reactive oxygen species (ROS), possibly through the transcriptional induction of four Respiratory Burst Oxidase Homologs TUNEL-positive nuclei in meristematic cells indicated the involvement of programmed cell death (PCD) in the process. These cells also accumulated nitric oxide and stained heavily for ethylene biosynthetic transcripts. A sharp increase in the expression level of several 1-aminocyclopropane synthase (ZmAcs2, ZmAcs6, and ZmAcs7), 1-aminocyclopropane oxidase (Aco15, Aco20, Aco31, and Aco35), and ethylene-responsive (ZmErf2 and ZmEbf1) genes was observed in hypoxic ZmPgb-suppressing roots, which overproduced ethylene. Inhibiting ROS synthesis with diphenyleneiodonium or ethylene perception with 1-methylcyclopropene suppressed PCD, increased BAX inhibitor-1, an effective attenuator of the death programs in eukaryotes, and restored root growth. Hypoxic roots overexpressing ZmPgbs had the lowest level of ethylene and showed a reduction in ROS staining and TUNEL-positive nuclei in the meristematic cells. These roots retained functional meristems and exhibited the highest growth performance when subjected to hypoxic conditions. Collectively, these results suggest a novel function of Pgbs in protecting root apical meristems from hypoxia-induced PCD through mechanisms initiated by nitric oxide and mediated by ethylene via ROS.
منابع مشابه
Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance
Plant roots are essential for overall plant development, growth, and performance by providing anchorage in the soil and uptake of nutrients and water. The primary root of higher plants derives from a group of pluripotent, mitotically active stem cells residing in the root apical meristem (RAM) which provides the basis for growth, development, and regeneration of the root. The stem cells in the ...
متن کاملPericycle cell proliferation and lateral root initiation in Arabidopsis.
In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root p...
متن کاملControl of shoot and root meristem function by cytokinin.
Plant hormones regulate a variety of processes fundamental for growth and development. Recent studies have clearly shown that establishing adequate spatial and temporal distribution of hormones is central in the control of development. The activity of cytokinins (CKs) is essential to maintain undifferentiated cells in shoot apical meristem (SAM) and to promote cell differentiation in the root m...
متن کاملThe Rate of Cell Differentiation Controls the Arabidopsis Root Meristem Growth Phase
Upon seed germination, apical meristems grow as cell division prevails over differentiation and reach their final size when division and differentiation reach a balance. In the Arabidopsis root meristem, this balance results from the interaction between cytokinin (promoting differentiation) and auxin (promoting division) through a regulatory circuit whereby the ARR1 cytokinin-responsive transcr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 172 3 شماره
صفحات -
تاریخ انتشار 2016